Numerical investigation of refractory lining thickness effects on shell temperature in the burning zone of cement rotary kilns
DOI:
https://doi.org/10.32972/dms.2025.002Kulcsszavak:
Refractory Lining, Cement Rotary Kiln, Burning Zone, Finite Element Simulation, Thermal PerformanceAbsztrakt
Cement kilns are energy-intensive systems where refractory insulation plays a critical role in minimising heat loss and controlling shell temperature. The burning zone, in particular, operates under extreme thermal conditions, making the design of the refractory lining essential for maintaining thermal efficiency. This study presents a comprehensive numerical investigation into the influence of refractory lining thickness on the thermal performance of the kiln shell in the burning zone. Steady-state finite element simulations were conducted using Solid Edge Simulation with NX Nastran solver and actual rotary kiln parameters to analyse five different refractory thicknesses (150mm, 175mm, 200mm, 225mm, and 250mm). A uniform temperature boundary condition representing the thermal load typical of the burning zone in cement kilns. Results demonstrated a clear inverse correlation between lining thickness and outer shell temperature. The 250mm lining yielded a minimum shell temperature of approximately 155°C, while the 150mm lining led to external temperatures exceeding 250°C. These findings highlight the significance of optimizing refractory lining design to enhance energy efficiency, reduce thermal losses, and ensure structural safety in cement kilns. This work contributes to better thermal management and informed maintenance strategies in the cement manufacturing sector.
Hivatkozások
Adnan Sulayman, Q., & Mahmood, M. (2021, 6). Post-fire performance of structural steel., 14, pp. 28-41. doi:https://doi.org/10.24237/djes.2021.14203
Alturki, S., Swadi, S., Al-Rubaye, A., Suwaed, M., & Al-Mashhadani, S. (2023, 12). Design the mechanical–chemical reactor for oily wastewater treatment., 20, p. 101494. doi:https://doi.org/10.1016/j.rineng.2023.101494
Ari, V. (2011). Energetic and exergetic assessments of a cement rotary kiln system. Scientific Research and Essays, 6(6), 1428-1438.
Barbhuiya, S., Kanavaris, F., Das, B., & Idrees, M. (2024, 6). Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development., 86, p. 108861. doi:https://doi.org/10.1016/j.jobe.2024.108861
Baruah, B., & Sarkar, R. (2020, 7). Rare-Earth Oxide-Doped Magnesium Aluminate Spinel - an Overview., 69, pp. 40-45. doi:https://doi.org/10.1007/s42411-020-0094-8
Benhelal, E., Shamsaei, E., & Rashid, M. (2021, 6). Challenges against CO2 abatement strategies in cement industry: A review., 104, pp. 84-101. doi:https://doi.org/10.1016/j.jes.2020.11.020
Chen, S., Wang, J., Yuan, L., & Li, Q. (2018). Composite Design of Low Thermal Conductivity Mullite Brick for Application to Cement Kiln. MATEC Web Conf., 142, p. 6. doi:https://doi.org/10.1051/matecconf/201814202008
Cheng, D., Reiner, D., Yang, F., Cui, C., Meng, J., Shan, Y., . . . Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14(1), 8213. doi:https://doi.org/10.1038/s41467-023-43660-x
Dong, Z., Wang, Z., Zhao, Z., & Song, Y. (2025, 1). The Scrapping Mechanism for the Corundum–Mullite Refractory Material
in Rotary Kiln Incinerators., 18, p. 470. doi:https://doi.org/10.3390/ma18030470
Ewais, E., & Bayoumi, I. (2018, 6). Fabrication of MgO-CaZrO3 refractory composites from Egyptian dolomite as a clinker to rotary cement kiln lining., 44, pp. 9236-9246. doi:https://doi.org/10.1016/j.ceramint.2018.02.134
Guillin-Estrada, W., Albuja, R., Dávila, I., Rueda, B., Corredor, L., Gonzalez-Quiroga, A., & Maury, H. (2022, 6). Transient operation effects on the thermal and mechanical response of a large-scale rotary kiln., 14, p. 100396. doi:https://doi.org/10.1016/j.rineng.2022.100396
Okoji, A., Anozie, A., Omoleye, J., Taiwo, A., & Osuolale, F. (2022, 7). Energetic assessment of a precalcining rotary kiln in a cement plant using process simulator and neural networks., 61, pp. 5097-5109. doi:https://doi.org/10.1016/j.aej.2021.10.010
Özkan, S., & Acaralı, N. (2024, 8). Efficiency enhancement and cost reduction in cement clinker production: A comprehensive energy and exergy analysis of a rotary kiln in Turkey., 53, p. 102744. doi:https://doi.org/10.1016/j.tsep.2024.102744
Pacheco, G., Gonçalves, G., & Lins, V. (2020, 3). Qualitative and Quantitative Coating Tests: A Comparison in Magnesia Spinel Refractory Bricks., 3, pp. 144-154. doi:https://doi.org/10.3390/ceramics3010014
Pieper, C., Wirtz, S., Schaefer, S., & Scherer, V. (2021). Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns. Fuel, 283, 118951. doi:https://doi.org/10.1016/j.fuel.2020.118951
Sengupta, P. (2020). Refractories for the Chemical Industries. Cham: Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-61240-5
Soomro, M., Tam, V., & Jorge Evangelista, A. (2023). Production of cement and its environmental impact. (pp. 11-46). Elsevier. doi:https://doi.org/10.1016/B978-0-323-85210-4.00010-2
Supriya, Chaudhury, R., Sharma, U., Thapliyal, P., & Singh, L. (2023, 9). Low-CO2 emission strategies to achieve net zero target in cement sector., 417, p. 137466. doi:https://doi.org/10.1016/j.jclepro.2023.137466
Svensen, J., Leal Da Silva, W., Merino, J., Sampath, D., & Jørgensen, J. (2024, 6). A Dynamical Simulation Model of a Cement Clinker Rotary Kiln. (pp. 2162-2168). IEEE. doi:https://doi.org/10.23919/ECC64448.2024.10590953
Vitiello, D. (2021). Thermo-physical properties of insulating refractory materials. Limoges: Université de Limoges. Retrieved from https://theses.hal.science/tel-03289147
Zeng, D., Shcherbina, V., & Li, J. (2023). Thermal efficiency analysis of the rotary kiln based on the wear of the lining. International Journal of Applied Mechanics and Engineering, 28(2), 125-138. doi:https://doi.org/10.59441/ijame/168935