Analyzing How Cost Advantages of Autonomous Fleet Usage Could Transform Mobility in Hungarian Cities

Authors

  • Evelin Kecskés University of Szeged
  • Miklós Lukovics University of Szeged

DOI:

https://doi.org/10.32976/stratfuz.2024.7

Keywords:

autonomous vehicles, urban mobility, urbanization disadvantages

Abstract

The mobility of contemporary large cities is characterized by increasing car dominance, which results in growing urbanization disadvantages (traffic jams, noise, air pollution, cars parked on sidewalks, etc.). The business model of autonomous vehicle fleet usage creates the theoretical possibility to reduce the number of cars on city roads. We have increasing information about the costs of autonomous fleet usage, and various model calculations have identified the potential cost benefits of autonomous fleet usage compared to private car ownership. However, we know little about the cost benefits that would motivate the population to replace private car ownership with autonomous fleet usage. Our research aims to understand under what conditions the Hungarian population is willing to shift their daily mobility habits towards autonomous fleet usage. With our results, we estimate how much the number of cars on Hungarian roads can be reduced along various model variations and provide suggestions for further increasing these values.

Author Biographies

Evelin Kecskés, University of Szeged

economist, Faculty of Economics

Miklós Lukovics, University of Szeged

Dr. habil, Associate Professor, Faculty of Economics

References

Acheampong, R. A. – Cugurullo, F. – Gueriau, M. – Dusparic, I. (2021): Can autonomous vehicles enable sustainable mobility in future cities? Insights and policy challenges from user preferences over different urban transport options. Cities, 112,103134. https://doi.org/10.1016/j.cities.2021.103134

Alam, M.J. és Habib, M.A. (2018): „Investigation of the impacts of shared autonomous vehicle operation in Halifax, Canada, using a dynamic traffic microsimulation model” Procedia Computer Science 130: 496–503. https://doi.org/10.1016/j.procs.2018.04.066

Alazzawi, S. – Hummel, M. – Kordt, P. – Sickenberger, T. – Wieseotte, C. – Wohak, O. (2018): Simulating the impact of shared, autonomous vehicles on urban mobility – A case study of Milan. In Wießner, E. – Lücken, L. – Hilbrich, R. – Flötteröd, Y-P. – Erdmann, J. – Bieker-Walz, L. – Behrisch, M. (eds.): SUMO 2018 – Simulating Autonomous and Intermodal Transport Systems, 2, 94–110. https://doi.org/10.29007/2n4h

Alfonso, J. – Naranjo, J. E. – Menéndez, J. M. – Alonso, A. (2018): Vehicular Communications. Intell. Veh., Elsevier, 103–139. https://doi.org/10.1016/B978-0-12-812800-8.00003-5

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017, January 17). Ondemand high-capacity ride-sharing via dynamic trip-vehicle assignment. Retrieved November 29, 2018, from http://www.pnas.org/content/114/3/462

Atzori, L. – Floris, A. – Girau, R. – Nitti, M. – Pau, G. (2018): Towards the implementation of the Social Internet of Vehicles. Comput. Networks, 147, 132–145. https://doi.org/10.1016/j.comnet.2018.10.001

Bezai, N. E. – Medjdoub, B. – Al-Habaibeh, A. – Chalal, M. L. – Fadli, F. (2021): Future cities and autonomous vehicles: analysis of the barriers to full adoption. Energy and Built Environment, vol. 2., no. 1., 65-81. https://doi.org/10.1016/j.enbenv.2020.05.002

Bischoff, J. – Maciejewski, M. (2016): Simulation of city-wide replacement of private cars with autonomous taxis in Berlin. Proc. Comput. Sci., 83 (2016), pp. 237-244. https://doi.org/10.1016/j.procs.2016.04.121

BCG-WEF (2018): Reshaping Urban Mobility with Autonomous Vehicles Lessons from the City of Boston. World Economic Forum, Geneva.

Boesch, P.M., Ciari, F., 2015. Agent-based simulation of autonomous cars. In: 2015 American Control Conference (ACC). IEEE, pp. 2588–2592. https://doi.org/10.1109/ACC.2015.7171123

Bösch, Patrick M. – Becker, Felix. – Becker, Henrik. – Axhausen, Kay W. (2018): Cost-based analysis of autonomous mobility services. Transport Policy, 64, 76-91. https://doi.org/10.1016/j.tranpol.2017.09.005

Burns, Lawrence. D – Jordan, William C. – Scarborough, Bonnie A. (2013): Transforming personal mobility. The Earth Institute, Columbia University, 2013 http://wordpress.ei.columbia.edu/mobility/files/2012/12/Transforming-Personal-Mobility-Aug-10-2012.pdf

Brovarone, E. V. – Scudellari, J. – Staricco, L. (2021): Planning the transition to autonomous driving: a policy pathway towards urban live ability. Cities, 108, 102996. https://doi.org/10.1016/j.cities.2020.102996

Chapin, T.– Stevens, L. – Crute J. – Crandall, J. – Rokyta, A. – Washington, A. (2016): Envisioning Florida’s Future: Transportation and Land Use in an Automated Vehicle World. Final Report. Florida State University Department of Urban & Regional Planning, Tallahassee.

Csizmadia P. (2017): Everett Rogers innovációs elmélete és annak felhasználási lehetőségei az egészségfejlesztésben. Egészségfejlesztés, 58, 4, 50-58. https://doi.org/10.24365/ef.v58i4.208

Csizmadia Z. (2021): Az önvezető járművek világa. Akadémiai Kiadó, Budapest.

Cunningham, M. L., Regan, M. A., Ledger S. A., and Bennett, J. M. (2019). To buy or not to buy? Predicting willingness to pay for automated vehicles based on public opinion. Transportation Research Part F. 65, 418-438. https://doi.org/10.1016/j.trf.2019.08.012

Daziano. R., A., Sarrias, M., & Leard, B. (2017). Are consumers willing to pay to let cars drive for them? Analyzing response to autonomous vehicles. Transportation Research: Part C, 78, 150-164. https://doi.org/10.1016/j.trc.2017.03.003

DuPuis, N. – Cooper, M. – Brooks, R. (2015) City of the Future. Technology&Mobility. National League of Cities, Center for City Solutions and Applied Research, Washington DC.

EB (2004): A nagyvárosi utcák visszahódítása az emberek számára – Káosz vagy életminőség? Európai Bizottság, Luxemburg

Fagnant, D.J. – Kockelman, K.M. (2014): The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios, Transportation Research Part C: Emerging Technologies, Volume 40, Pages 1-13. https://doi.org/10.1016/j.trc.2013.12.001

Fagnant, D.J. – Kockelman, K.M. – Bansal P. (2015): Operations of shared autonomous vehicle fleet for Austin, Texas, Market. Transp. Res. Rec. J. Transp. Res. Board, pp. 98-106. https://doi.org/10.3141/2536-12

Fagnant, D.J., Kockelman, K.M., 2015. Dynamic ride-sharing and optimal fleet sizing for a system of shared autonomous vehicles. In: Transportation Research Board 94th Annual Meeting.

Fraedrich, E. – Heinrichs, D. – Bahamonde-Birke, F. J. – Cyganski, R. (2019): Autonomous driving, the built environment and policy implications. Transportation Research Part A: Policy and Practice, Volume 122, Pages 162-172. https://doi.org/10.1016/j.tra.2018.02.018

Kecskés E. – Lukovics M. (2023): Az önvezetőjármű-használat techno-ökonómiai megközelítése. Polgári Szemle, 1-3, 181–196., https://doi.org/10.24307/psz.2023.0912

Kesselring, S. – Freudendal-Pedersen, M. – Zuev, D. (2020): Sharing mobilities: New perspectives for the mobile risk society. New York and London: Routledge. https://doi.org/10.4324/9780429489242

Kézy B. – Szűcs P. – Lukovics M. (2018): Sétálhatósági tervezés a városfejlesztésben. In: Lengyel Imre (szerk.): Térségek növekedése és fejlődése: egészségipari és tudásalapú fejlesztési stratégiák. JATEPress, Szeged, pp. 261-275.

Kovács, P., – Lukovics, M. (2022). Factors influencing public acceptance of self-driving vehicles in a post-socialist environment: Statistical modelling in Hungary. Regional Statistics, 12(2), 149-176. https://doi.org/10.15196/RS120206

Lang, N. – Herrmann, A. – Hagenmaier, M. – Richter, M. (2020): Can Self-Driving Cars Stop the Urban Mobility Meltdown? Boston Consulting Group, Boston.

Lengyel I. (2021): Regionális és városgazdaságtan. Szegedi Egyetemi Kiadó, Szeged.

Liljamo, T. – Liimatainen, H. – Pöllänen, M. – Viri, R. (2021): The Effects of Mobility as a Service and Autonomous Vehicles on People’s Willingness to Own a Car in the Future. Sustainability, vol. 13., no. 4, 1962. https://doi.org/10.3390/su13041962

Lipson, H. – Kurman, M. (2016): Driverless: intelligent cars and the road ahead. MIT Press.

Litman, T. (2014): Economically optimal transport prices and markets. Victoria Transport Policy Institute, Victoria, Canada.

Litman, T. (2017): Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. Transp. Res. Board Annu. Meet, 42, 36–42.

Liu, F. – Zhao, F. – Liu, Z. – Hao, H. (2020): The impact of purchase restriction policy on car ownership in China’s four major cities. Journal of advanced transportation, 2020. https://doi.org/10.1155/2020/7454307

Lukovics M. (2023): Összekapcsolt autonóm járművek: kihívások és válaszok a városfejlesztésben. Comitatus, 33(245), 73. https://doi.org/10.59809/Comitatus.2023.33-245.73

Martinez, L.M. – Correia, G.H. – Viegas J.M. (2015): An agent-based simulation model to assess the impacts of introducing a shared-taxi system: an application to Lisbon (Portugal). J. Adv. Transp., 49 (2015), pp. 475-495.

Martinez, L. M. – Viegas, J. M. (2017): Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal. International Journal of Transportation Science and Technology, 6,13–27. https://doi.org/10.1016/j.ijtst.2017.05.005

Overtoom, I.–Correia, G.–Huang, Y.–Verbraeck, A. (2020): Assessing the impacts of shared autonomous vehicles on congestion and curb use: A traffic simulation study in the Hague, Netherlands. International Journal of Transportation Science and Technology, Vol. 9. No. 3. 195–206. o. https://doi.org/10.1016/j.ijtst.2020.03.009

Moreno A, – Michalski A, – Llorca C, – Moeckel R. (2018): Shared autonomous vehicles effect on vehicle-km traveled and average trip duration. J Adv Transp. 2018:1–10. https://doi.org/10.1155/2018/8969353

Narayanan, Santhanakrishnan–Chaniotakis, Emmanouil–Antoniou, Constantinos (2020): Shared autonomous vehicle services: A comprehensive review. Transportation Research Part C: Emerging Technologies, 111, 2, pp. 255–293. https://doi.org/10.1016/j.trc.2019.12.008

Prónay, S., Lukovics, M., Kovács, P., Majó-Petri, Z., Ujházi, T., Palatinus, Z., & Volosin, M. (2022). Pánik próbája a mérés: Avagy önvezető technológiák elfogadásának valós idejű vizsgálata neurotudományi mérésekkel. Vezetéstudomány / Budapest Management Review, 53(7), 48–62. https://doi.org/10.14267/VEZTUD.2022.07.05

Rigole, P.-J., 2014. Study of a Shared Autonomous Vehicles Based Mobility Solution in Stockholm.

Shatanawi, M. – Abdelkhalek, F. – Mészáros F. (2020): Urban Congestion Charging Acceptability: An International ComparativeStudy. Sustainability, 12, 12, 5044. https://doi.org/10.3390/su12125044

Smahó M. (2021): Autonóm járművek a jövő városában. In: Csizmadia, Zoltán; Rechnitzer, János (szerk.) Az önvezető járművek világa: Társadalmi hatások és kihívások. Akadémiai Kiadó, Budapest.

Somos, P. – Lukovics, M. (2023): Investigating the Public Acceptance of Autonomous Delivery Vehicles in Hungary. Észak Magyarországi Stratégiai Füzetek, 2, 31-45. https://doi.org/10.32976/stratfuz.2023.14

Spurling, N. – McMeekin, A. (2014): Interventions in practices: Sustainable mobility policies in England. In Y. Strengers, ¬ C. Maller (Eds.) (2014): Social practices, intervention and sustainability. London: Routledge.

Straub, Edward R. – Schaefer, Kristin E. (2019): It takes two to Tango: Automated vehicles and human beings do the dance of driving –Four social considerations for policy. Transportation research part A: policy and practice, 122, 173-183. https://doi.org/10.1016/j.tra.2018.03.005

Threlfall, R. (2018): Autonomous vehicles readiness index. Klynveld Peat Marwick Goerdeler (KPMG) International.

Wadud, Zia. (2017): Fully automated vehicles: A cost of ownership analysis to inforn early adoption. Transportation Research Part A: Policy and Practice, 101, 163-176. https://doi.org/10.1016/j.tra.2017.05.005

Wadud, Zia – Mattioli, Giulio (2021): Fully automated vehicles: A cost based analysis of the share of ownership and mobility services, and its socio-economic determinants. Transportation Research Part A: Policy and Practice,151, 228-244. https://doi.org/10.1016/j.tra.2021.06.024

Zhang, W. – Guhathakurta S. (2017): Parking spaces in the age of shared autonomous vehicles: how much parking will we need and where? Transp. Res. Rec. J. Transp. Res. Board (2017), pp. 80-91. https://doi.org/10.3141/2651-09

Zhang W, Guhathakurta S, Khalil E. The impact of private autonomous vehicles on vehicle ownership and unoccupied VMT. Transport Res Part C: Emerg Technol. 2018 https://doi.org/10.1016/j.trc.2018.03.005

Zhang W, Guhathakurta S, Khalil E. The impact of private autonomous vehicles on vehicle ownership and unoccupied VMT. Transport Res Part C: Emerg Technol. 2018 doi: 10.1016/j.trc.2018.03.005

Zhao, Y. – Kockelman, K.M. (2018): „Anticipating the regional impacts of connected and automated vehicle travel in Austin, Texas” Journal of Urban Planning and Development 144(4): 04018032. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000463

Downloads

Published

2024-07-04

How to Cite

Kecskés, E., & Lukovics, M. (2024). Analyzing How Cost Advantages of Autonomous Fleet Usage Could Transform Mobility in Hungarian Cities. Strategic Issues of Northern Hungary, 21(01), 82–97. https://doi.org/10.32976/stratfuz.2024.7