Impact of social innovation on population change in Borsod-Abaúj-Zemplén County
DOI:
https://doi.org/10.18096/TMP.2021.01.05Keywords:
social innovation, spatial inequalities, spatial autocorrelation, population changeAbstract
Technological and economic innovations cannot respond to all social challenges. Natural and material resources are becoming ever scarcer, so it is necessary to use investment assets, maximizing social and economic efficiency. It is a major task to address the backwardness originating from regional disparities and to create opportunities for catching up in peripheral regions. The study, based on the process-oriented model defined in our previous studies and the determination of the social innovation potential, tries to determine the relationship between social innovation potential, the spatial position of developmental image, and regional differences and population change in Borsod-Abaúj-Zemplén County.
References
BENEDEK, J.–KOCZISZKY, GY.–VERESNÉ SOMOSI, M.–BALATON, K. (2015): Regionális társadalmi innováció generálása szakértői rendszer segítségével (Generating regional social innovation through expert system) Észak-magyarországi Stratégiai Füzetek 12 (2): 4–22.
CAJAIBA-SANTANA, G. (2013): Social innovation: Moving the field forward. A conceptual framework. Technological Forecasting and Social Change, 82, pp. 42-51. https://doi.org/10.1016/j.techfore.2013.05.008
CZAKÓ E. (2000): Versenyképesség iparágak szintjén – a globalizáció tükrében, PhD disszertáció (Competitiveness at the level of industries - in the light of globalization, PhD dissertation), Budapest: BKÁE Vállalatgazdaságtan Tanszék
GRIMM, R.–C, FOX.–S, BAINES.–K, ALBERTSON. (2013): Social innovation, an answer to contemporary societal challenges? Locating the concept in theory and practice, Innovation: The European Journal of Social Science Research, 26(4): 436-455. https://doi.org/10.1080/13511610.2013.848163
HAZEL, KL.–ONAGA, E. (2003): Experimental social innovation and dissemination: the promise and its delivery, Am J Community Psychol, 32(3-4): 285-294. https://doi.org/10.1023/b:ajcp.0000004748.50885.2e
HOCHGERNER, J. (2011): The Analysis of Social Innovation as Social Practice. Bridges, Transatlantic Science and Technology Quarterly, 30: 1–15
HOUSTON, D. B. (1967): The shift and share analysis of regional growth: a critique Southern Economic Journal 33 (4): 577–581. https://doi.org/10.2307/1055653
IONESCU, C. (2015): About the conceptualization of social innovation, Theoretical and Applied Economics, Volume XXII, No. 3 (604), Autumn, pp. 53-62.
KATONÁNÉ KOVÁCS, J.–VARGA, E.–NEMES, G. (2017): Fókuszban a társadalmi innováció folyamata a magyar vidéken (The focus is on the process of social innovation in the Hungarian countryside) Észak-magyarországi Stratégiai Füzetek 14 (1): 6–19.
KINCSES, Á. (2015): A nemzetközi migráció Magyarországon és a Kárpát-medence magyar migrációs hálózatai a 21. század elején (International migration in Hungary and the Hungarian migration networks of the Carpathian Basin at the beginning of the 21st century). Műhelytanulmányok 8., Központi Statisztikai Hivatal, Budapest.
KOCZISZKY, GY. – VERESNÉ SOMOSI, M – BALATON, K. (2017): A társadalmi innováció vizsgálatának tapasztalatai és fejlesztési lehetőségei (Experiences and opportunities for developing social innovation) Vezetéstudomány / Budapest Management Review 48 (6-7): 15–19. https://doi.org/10.14267/veztud.2017.06.02
MAJOR, K.–NEMES NAGY, J. (1999): Területi jövedelemegyenlőtlenségek a kilencvenes években (Territorial income inequalities in the 1990s) Statisztikai Szemle 77 (6): 397–421.
MANZINI, E. (2014): Making Things Happen: Social Innovation and Design, Design Issues, Volume 30, Issue 1, pp.57-66. https://doi.org/10.1162/desi_a_00248
MULGAN, G.–TUCKER, S.–ALI, R.–SANDERS, B. (2007) Social Innovation: What It Is, Why It Matters and How It Can Be Accelerated. Skoll Centre for Social Entrepreneurship, Said Business School, University of Oxford. https://youngfoundation.org/wp-content/uploads/2012/10/Social-Innovation-what-it-is-why-it-matters-how-it-can-be-accelerated-March-2007.pdf (accessed September 2019).
NAGY, Z. – TÓTH, G. (2019): A társadalmi innovációs potenciál mérési lehetőségei Borsod-Abaúj-Zemplén példáján (Possibilities of measuring social innovation potential on the example of Borsod-Abaúj-Zemplén), Észak-magyarországi Stratégiai Füzetek XVI. évf. 2. szám, pp. 97-109.
NEMES G. – VARGA Á. (2015): Társadalmi innováció és társadalmi tanulás a vidékfejlesztésben – sikerek, problémák, dilemmák (Social innovation and social learning in rural development - successes, problems, dilemmas) In: „Mérleg és Kihívások” IX. Nemzetközi Tudományos Konferencia, Konferencia kiadvány (Veresné Somosi M., ed.), Miskolc, pp. 434-444
NEMES NAGY, J. (ed.) (2005): Regionális elemzési módszerek (Regional Analysis Methods) Regionális Tudományi Tanulmányok 11., ELTE Regionális Földrajzi Tanszék–MTA-ELTE Regionális Tudományi Kutatócsoport, Budapest.
NEMES NAGY, J.–JAKOBI, Á.–NÉMETH, N. (2001): A jövedelemegyenlőtlenségek térségi és jövedelemszerkezeti összetevői (Regional and income structure components of income inequality) Statisztikai Szemle 79 (10–11): 862–886.
POL, E.–VILLE, S. (2009) Social Innovation: Buzz Word or Enduring Term? The Journal of Socio-Economics 38 (6): 878–885. https://doi.org/10.1016/j.socec.2009.02.011
SIKOS T. T: (szerk.) (1984): Matematikai és statisztikai módszerek a területi kutatásokban (Mathematical and Statistical Methods in Field Research). Akadémiai Kiadó, Budapest.
STEVENS, B. H.–MOORE, C. L. (1980): A critical review of the literature on shift-share as a forecasting technique Journal of Regional Science 20 (4): 419–437. https://doi.org/10.1111/j.1467-9787.1980.tb00660.x
TÓTH, G. (2002): Kísérlet autópályáink területfejlesztő hatásának bemutatására (An attempt to demonstrate the spatial development impact of our highways) Területi Statisztika 42 (6): 493–505.
Varga, K., Tóth, G., & Nagy, Z. (2020). Examination of Social Innovation Potential Characteristics in the Example of Borsod-Abaúj-Zemplén County. Theory Methodology Practice, 16(1), pp. 65-76. http://dx.doi.org/10.18096/TMP.2020.01.07
VERESNÉ SOMOSI, M. – VARGA, K. – KOCZISZKY, GY. (2019): Step by Step for Social Innovation with Neuro-Fuzzy Modelling, European Journal of Economics and Business Studies 5: 1. pp. 13-23. https://doi.org/10.26417/ejes.v5i1.p13-23
i The input indicators:
Number of non-governmental organizations (NGOs) per 10,000 inhabitants
Number of active companies per 1,000 inhabitants
Number of non-profit organizations per 1,000 inhabitants
Proportion of children in the population
Number of elderly per 100 children
Dependency ratio: children (aged zero to 14) and elderly (age 65 and above) as a percentage of the totalpopulation aged 15 to 64)
Activity rate (taxpayers/population * 100)
Average number of completed years of education, 2011
The output indicators:
Payout per capita (2007–2013)
Proportion of the public employees compared to the population aged 15–64
Number of participants in cultural events per thousand persons 1,000 inhabitants
Proportion of people living in segregation
Number of persons receiving social catering service per 1,000 inhabitants
Number of recipients of home care assistance per 1,000 inhabitants
Unemployment rate
Average patient turnover per GP and pediatrician
The impact indicators:
Annual average income per capita (thousand HUF)
Percentage of population with primary education over 7 years (including early school leavers)
Proportion of one-person households
Proportion of families with three or more children
Number of registered crimes per 1000 inhabitants
Number of beds in institutions providing long-term residential care per 1000 inhabitants
Proportion of taxpayers earning in the 0 HUF to1 million HUF income band
Proportion of regularly cleaned public areas.